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The slower than Debye relaxation in condensed matter is well-known as is

evidenced by this topical meeting itself! In this paper, we develop in detail

the theoretical ideas proposed earlier by one of us1 some time ago, with the

hope that some of the obscurities in that paper are removed and our current

thinking on the subject is explained in some detail. Ngai 2 has given a

detailed account of the experimentally observed universal form for the

relaxation of any physical quantity, viz.

exp-a (t/T) b, a > 0, 0 < b < 1 (1)
p

with T p, a characteristic time in the system, under diverse physical

conditions. That the form, Equ.(1) is so universally found is intriguing and

we seek a theoretical explanation of it which is, as far as possible, also

universal and model-independent. That the relaxation be bounded by a function

of the form (1) can be deduced by the mere requirement of the semiboundedness

of the spectrum of the Hamiltonian describing the relaxing system and its

attendant environment and the square Integrability of the relaxation function

itself, by using the Paley-Wiener (PW) theorem, was recently proposed3 . This

observation gives rise to the Paley-Wiener criterion for relaxation which has

the strong implication that indeed the usual Debye form with b-1 in Equ.(1) is

ruled out because then, it would imply the spectrum of the Hamiltonian is not

bounded from below, which is not physically acceptable. The aspect of square

integrability of the relaxation function is new and in the absence of no

information as to the nature of the long time behaviour, this requirement does

not seem unpalatable. The quantum statistical evolution of a system is

controlled by the Liouville operator given the initial state of the system but
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no other statement is made as to the nature of the time-dependence, except

that for large times the system evolves into a statistical equilibrium state.

No comment can be made in general as to how this state is approached with the

present set up of the equations and conditions imposed. If one adds the

physical requirement of the PW, then one can make detailed comments about the

time dependent of approach to equilithium. This PW criterion is thus a

postulate which is, as of our present understanding, a general statement,

independent of the actual model. But in actual fact, the bound is attained

experimentally and it is this aspect that was addressed to in Ref. 1., where

it was postulated that the long-time behaviour (viz. longer than, say, 10-10

sec) is controlled by low energy, many-body excitations of the system with

energies less than, say, 10+ 10 Hz. This leads us to the discussion of what is

"relaxation" in condensed matter systems. One considers a physical property

such as electric or magnetic or thermodynamic or structural etc. and examines

how this property behaves as time evolves. We think of these properties as

being described by the respective "species" such as dipoles for dielectric

relaxations, spins for magnetic problems etc. The evolution at long times

( 10-10 sec) is the regime that is being considered here. This in turn

implies that we are probing energy levels of the systems of order h/10-10 sec

* or 10-1 OK. Had we considered shorter time scales such as 10-13 sec, the

*- corresponding energy levels probed are of order 3000K, corresponding to

* excitations of the system via phonons etc. But at energies such as 10-1 OK,

one has no known excitations and one must seek newer low energy mechanisms
I

*" which drive the system to relax. Moreover, this process is necessarily

"classical" involving such low energies because equilibrium thermal energies,

kT, at which experiments are conducted are almost always much larger than 10-1

OK. We ask ourselves what these excitations could be and how can we describe

1i



them? Ordinary quantum statistical mechanical description must accomodate

these low energy processes in a crucial way in order to be able to give r 4 se

to time-dependence of relaxation of the form given by Equ.(1). From the

Paley-Wiener argument, we noted earlier that the pure Debye exponential decay

is not acceptable because the Hamiltonian of the system will not then be

bounded from below. This difficulty is removed if we considered the coupling

of the "species" to the low energy excitations of a Heat Bath in which the

given system is immersed. The Heat Bath is assumed to be a larger system

which is itself unaffected by the presence of the system under consideration

but causes the system to relax to equilibrium which is characterized by the

temperature of the heat bath. The interaction between the system and the bath

is such that the relaxation comes about without anything happening to the bath

itself. Conventional Hamiltonian description sets a basic energy scale and in

the case of a heat bath, it can only be a continuous energy spectrum with no

apparent discrete energy scale because the bath is considered very large

compared to the system with which it is in contact and only the average of the

bath Hamiltonian is needed to specify the temperature to which the system

ultimately goes to. It therefore appears abundantly clear that the bath

Hamiltonian cannot be specified in detail but yet what is needed in

determining the long time relaxation phenomenon is the small energy-level

spacings (of order of 10-4 ev or lower) of the spectrum of the heat bath.

We have thus motivated the use of a non-specific large system whose

average spectral properties are only needed in developing a theory of

relaxation phenomenon in condensed matter systems. We note at this stage, the

description of the heat bath by the Wigner Random Matrix Hamiltonian theory

seems admirably suited with our requirements stated above. We now proceed to

outline our theory of relaxation. This Involves three steps: (1) derivation
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*. of the relaxation function; (2) introduction of the jump-rate of transition;

and (3) the calculation of the jump-rate.

We consider some elementary entities as being the actors in the relaxation

process. They flip between equivalent energy states (energy degenerate) and

are thought to be immersed in a bath system described by the Wigner Random

Matrix Hamiltonian. We use the Gaussian Orthogonal Random Matrix Hamiltonian

(GOE) because we consider the heat bath to be time-reversal invariant and also

that it has a definite average energy so that one may employ a canonical

ensemble picture to describe it with a fixed temperature associated with it.

In equilibrium then, the actors acquire this same temperature, T.

Step 1: Derivation of the Relaxation Function

Let 1,2 represent (for simplicity we consider a two-equivalent-state

system) the two equivalent system states and let pl(t) and P2 (t) be their

occupancies at an instant t. The interaction of these system states with the

heat bath induces transitions between these two states. We are interested in

computing the relaxation of this system which is merely the correlation of

P(t) =P1 (t) - P2 (t) at two different times. We are thus Interested in

-(t) <<P(to) P(to-t)>> (2)

<< --->> is the quantum statistical thermal average over the entire bath plus

system hamlltonian4 . Here to is some initial time. We are Interested in the

long time (t + -) behaviour of this function. Thus, for frequencies

w<1O Hz, which is equivalent to a temperature of 1/2 OK and below, we may

make the approximation kT>Aw and so only the classical limit of Equ.(2)

suffices. In this limit, Equ.(1) becomes

ITI
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B<P (to) P (to-t)>0  (3)

where <---> Is the classical average over the equilibrium distribution

function and 0-1/kT. P here denotes time derivative. It is important to

stress here that in the long time limit, the classical limit of (2) suffices

because kT>iiw of the system.

Step 2: Introduction of the Jump-transition Rate

In the classical limit then, it suffices to consider a rate equation for

the populations for pl(t) and p2(t) and deduce therefore a form for the

relaxation function, (3). Defining W(t) to be the general time-dependent jump

transition rate for flipping from state 1 to 2 and vice versa, we have, the

rate equations

01(t) = - W(t) (Pl(t) - p2 (t))

(4)

2( = - W(t) (p2 (t) - Pl(t))

*I where we have taken into account the fact that the flipping occurs between the

two equivalent states only and that there is no loss of species in the process

i.e., Al + 02 -0. Thus, we find at once

* P(t) -- 2 W(t) P(t) (5)

where P(t) - pl(t) - p2(t) introduced before in Step 1. Thus, we obtain,

P(t) - Po exp(-2 W(tl)dt') (6)

i T.• " ":, . ,.



where t P0 are the values that the system takes as time progresses. And so

the relaxation function, (3), has the form

*(t) = 2 o P02 W(t) exp (-2f W(t')dt') (7)

It should be observed that if W(t) is taken to be a constant, independent

of time, say We, then we obtain the classical Debye result:

*(t) 2 a P0W 0 exp(-2 Wo t) (8)
Debye

and the relaxation time is T = 1/2W o. In obtaining the rate (or master)

equation, (4), one often goes through a detailed analysis of the density

matrix with Markoffian assumptions concerning the process that are going on in

the system and the constant W is the time-independent transition rate (TITR)

given by the Golden Rule of Quantum Mechanics.5  It should therefore be

stressed that the steps I and II above are really stemming from more

fundamental considerations even though we have presented them here in a

simpler, physical way. The question then is to consider the evaluation of

W(t) in greater detail than has been done before.

Step III: Calculation of W(t)

The mechanism that gives rise to W(t) is the interaction of the

equivalent states introduced in Step I with low lying manybody states with

energies less than say, 11OHz, in order to determine the long time decay

phenomena. In doing this computation, the spontaneous emission and absorption

processes are both taken into account. In fact, this calculation is very

similar to the phonon side band problem except that in the present context we



have to work with the Wigner system instead of the phonons. The result is

Wit) =W o exp(-O(t)) (9)

where #(t) is the time response of the heat bath (or Wigner system), taking

care to remember that the energies involved here, A w, are all much less than

kT, the thermal energy, so that the associated probabilities for both emission

and absorption are just constants, a factor of 1/2. Moreover, here f(t) is

real with no threshold effects.

In order to derive Equ.(9) and an explicit form for #(t) we proceed as

follows. We consider a relaxing system i.e., after a certain relaxation

time T, the system is thought to be in a relaxing state. Given such a T, we

define destruction and creation operators R and Rt associated with relaxation

such that

RI> = 0 in the relaxing state (10)

where J> refers to a pseudo "vacuum" of the relaxing state and the heat bath

with which the system is in contact. Then Rt(o)l> is the given relaxing state

at an initial reference time (this is the time the system had begun to relax!)

which we denote here as the zero of our reckoning of time. We then ask how

this state evolves in time. This time evolution is governed as usual by

Rt (t)I> - eiHt Rt(o)e'IHtI> (11)

where H Is the Hamiltonlan describing the relaxing system, the heat bath with

which It Is In contact, and the interaction between them. This we denote by

Ho + V. We are thus led to the calculation of the quantity

.' . -
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b(t) <IR(t) Rt (0)1>

= <Ie iHt R(o) e-iHt Rt (o)1> (12)

Since Rt (o)l> represents the given relaxing state,

e iHt Rt(o)l> = Rt(o) qxp-i(Ho+V)Rt

where (Ho+ V)R stands for the part of the Hamiltonian associated with the

relaxing state under study. Since we are here for simplicity, considering

only one relaxing state, R(o) Rt(o) = 1, and moreover <le+i(Ho+V)t= <le+iHot

because <1 by virtue of its definition contains no interaction between the

relaxing state and the heat bath. Thus,

b(t) = <Iexp(i Hot) (exp -i(Ho+V)Rt) I> (13)

The state R in the above does not contain any index because we will invoke the

"randomness" of the Heat Bath Hamiltonian to eliminate reference to any

special state. With this understanding, we may drop the subscript R in

Equ.(13) and compute

U(t) = elHote-i(Ho+v)t (14)

by using standard cluster expansion techniques. The result is

b(t) exp {*(t)l (15)

where

!



+i)=  n (15(Ia)

n=l
and

1t= - iJ dt1 <lv(tl)l> (15b)

f =2(t)  - /2 dt I  dt2 [<IT(V(t1)V(t2)1>

-<IV(tl)l> <IV(t2)1>] etc. (15c)

We have thus reduced the problem to consideration of the bath states

only. Remembering that the bath states are treated in a canonical ensemble

framework, and since fl(t) involves expectation value of the interaction

between the system and the bath, it may be dropped from further consideration

and consider only f 2 (t). The other higher order terms may be dropped, partly

because of the weak coupling between the bath and the system and partly

because it would involve the multiple energy level distributions which may be

expected to be of smaller significance compared to the first nontrivial

contribution, f2 . Thus

iVil 2 it(E E.E - it(-E ))

2i,j E (1-e i 'J + (l-e" E )}(16)

i*j

The factors 1/2 in {....} appear from equal occupancies of the state Ei,E j of

the bath. The sum over ij can be written as

-2
(t )  ( 1/2ElC 12) (lcosct) (17)(Ei-Ej= :

We now argue that 1/2 lij Ivij2) is independent of E because lviil2 is
E -E c

II



a random quantity uncorrelated with c except perhaps when there are strong

correlations which may occ- ; when the energies are high such that the modes

are well localized. This aspect is the basic strength of the approach of the

- model because the "randomness" now has been separated out of the main problem

so that a universal result is obtained without the knowledge of the random

distribution of lViji2 with Et-E 3 = £ . Thus, introducing

1 / vii 2)+fc de Iv12 N(e)
i*j  0

we obtain,

de(t) =cc de N(c) IvI (1"st)(18)

The cut off c (10 10Hz) is introduced here such that

Il2 N (c) = cn, (0 < n < 1) (19)

is violated beyond e = c Here we have invoked the Wigner result concerning

the level-spacing distribution of a GOE. This final result then leads to the

universal formI of relaxation given in Equ.(1) with b=-1n.

The above arguments are at a physical level, lacking perhaps the rigor of

mathematics. Our aim was to give a simple physical derivation of Equ.(1).

There is a completely heuristic, mathematical way of arriving at such a result

also by invoking the mathematical idea of "fractional Brownian Motion" (and

the fractal times) of Mandelbrot and van Ness 7 . This procedure would imply



that relaxation process may be thought of as basically a generalized diffusion

process. The conventional diffusion process using a Langevin equation with

white noise stochastic process leads to the Debye exponential relaxation. If

one believes in the diffusion mechanism as underlying relaxation processes,

then one is forced to modify the white noise stochastic picture of diffusion

by the "fractional Brownian noise" so that one obtains a non-Debye relaxation

of the form given by Equ.(1). But we know2 that not all physical relaxation

processes can be related to Brownian motion and so this model suffers from a

lack of physical basis in spite of the fact that one may be able derive non-

exponential decay of the form given by Equ.(1). This is an interesting

A mathematical aspect of the non-Debye relaxation. A purist may object to this

approach to relaxation because the basic premise here is that the underlying

rate equation is a Langevin type equation with fractional brownian noise, to

which one has no answer except to say that it seems to lead us to the observed

result. There are attendant changes in the Einstein relation etc. that ensue

such a framework and the reader may refer to Ref. 8 for a discussion of it.

There is another level at which the present problem may be attacked.

This is perhaps the most complete theory but even here certain characteristics

of the heat bath have to be introduced at a particular point. We present this

approach for the complete non-believer with the hope that this approach may be

appealing to both physically and mathematically minded person. In this

approach one begins with a density matrix for a system, heat bath, and their

mutual interaction with the explicit knowledge that the heat bath is much

larger than the system in contact with it and their mutual interaction Is weak

such that the leading order calculation suffices. Moreover one constructs the

system density matrix by taking a trace over the bath so that the result Is

free of all bath variables. The difference between this approach and a



similar approach found in the literature S in the derivation of the master

equation for the system density matrix is that in our procedure, while we make

the Markoff approximation, we keep the time-dependence of the transition

rate. By so doing, we bring in details of the bath Hamiltonian. Also,

invoking the Wigner's random matrix Hamiltonian as a description of the heat

bath, which seems most appropriate for describing the unknown, large system,

we see that this program makes the derivation of an equation such as Equ.(5)

including an expression for W(t) quite acceptable, on a formal level.

In this case, we do not invoke the PW theorem but we are in comformity

with It. We use the known information about the system plus heat bath at the

initial time where it is given that the bath is in a canonical ensemble and

the system is in some preassigned system density matrix and the above program

answers the question of ultimate time evolution of the system to an

equilibrium ensemble state. In so doing, unlike in the equilibrium

statistical mechanical theory where the system relaxes to an equilibrium state

with the same temperature as the heat bath, which is merely the average of the

heat bath hamiltonian, the long time relaxation behaviour depends on the

nature of the bath spectrum for small energy level spacings. Using the

results of the Gaussian Orthogonal ensemble theory of random matrix

Hamiltonian as was done in Ref. 1, we deduce the universal relaxation of the

form given of Equ.(1). For a discussion of this theory but in the context of

quantum mechanics of the system plus bath system, one may refer to the paper

of Rajagopal and Wlegel. 9

In the derivation of the universal relaxation function, Eq.(1) given

earlier, the bath states take a subservient role. The relaxation species is

the center of attention. Its relaxation rate is calculated and the bath

states come into the picture only in how they modify its relaxation rate.

'I



Stimulated by an idea of Palmer and Anderson10 , we shall give here another

derivation of the universal law (1) while treating both the relaxation species

and the bath states altogether on an equal footing. That is, we start by

writing down the relaxation rate as11

W(t) = Wo e(E - T aS)fkT (20)

Here Wo exp(-E/kT) represents the transition rate of the relaxation species if

its interaction with the bath states is ignored. Thus E is an activation

energy if its value is nonzero. Wo is the "attempt frequency" of the primary

species. The quantity AS is the entropy of the bath states measured from its

maximum value. Initially before the commencement of relaxation, the bath

states are in equilbrium and its entropy must have a maximum value, Smax*

After relaxation has commenced at t=O, the interaction between the

relaxing species and the bath states causes excitation and deexcitation of the

bath. We calculate the probability that the bath remains in the same state

after the interaction V is turned on, in the lowest order perturbation

theory. This probability is

( 1-cos (E I-Ej )t )

Pi 2 1 lj( )I'ijI _ i (21)(Ei-E )  11

because we assume that the bath states are perturbed very little by the

interaction with the system. If the interaction V were neglected, pi -I as

it should, by construction. Then, calculating the entropy change due to this,

we have, to leading order in the interaction,



AS P1 in 1  -1/2 E 1V j 1 2  41-coS(E- (22)
ij*i 2

(E- iE

In the above, 1,j refer to a group of states of the bath which form the bath

ensemble.

Following the same arguments as before, (see Equ. 17,18,19) we find

AS S + (23)

where AS is the contribution to the entropy change arising from the states

above Cc andany other mechanism and will depend on temperature etc. in

general especially near a glass transition, for example. Substitution of

-Equ.(23) into Equ.(20) leads immediately to the TDTR

W(t) = ( ct) -n W eE/kT e S>/k (24)

c 0

This is turn leads to the universal relaxation function

exp {-tl-nCc-n  Wo1 exp(E/kT- AS>y) (25)

1-n
exp - (t/p)l  (26)

and the renormalization relation

p - 1 n (27)

*1



between the observed T ad the microscopic W -1 expp~ ~ o epkT-
Obviously the present approach and the earlier one are closely related.

Both have the infrared divergent bath states excitation at their root. The

difference between the earlier approach and the present one is that the entire

system, relaxation species plus the bath states are considered at the same

time. It is not surprising that we obtain the same results independent of the

approach. However the present approach which lets its bath states play a more

active role enables further interpretation of the physical processes that

occur in relaxation phenomena in condensed matter. Relaxation of the species

will lead to an increase in entropy with time as all irreversible processes do

according to the second law of thermodynamics. What is interesting here is

that not only the relaxation is non-exponential in time and have the universal

*form of Eq.(1), but also this relaxation is accompanied by a decrease in

entropy of the bath states.

In closing we would like to discuss another derivation of the universal

relaxation function which is totally different in spirit from the mechanistic

models given earlier. Given the universal form of the macroscopic relaxation

function in Eq.(1), one is led to consider a microscopic mechanism underlying

relaxation phenomenon in general. We may think of the relaxing body as being

composed of some species of relaxing entities such as electric dipoles in a

dielectric, charge carriers in a semiconductor, etc., each of which had

identically distributed energy variables with the same energy distribution.

The macroscopic energy distribution function p(e) associated with the

relaxing body for low energies is the limit distribution of normalized sums of

the microscopic energy variables. A similar procedure is involved in

statistical mechanics for deriving equilibrium ensemble distributions. The

resulting macroscopic density distribution p(c) necessarily obeys the



relationship12

p(ac+b) = (a a2/a) de'P(a1 (e-e')+b1 )p(a2 '+b2 )(2)

for every set of parameters ai > 0, bi with the corresponding a > 0, b related

to the parameters ai, bI. The relaxation function is proportional to the

modulus square of the Fourier transform, Ic(t)1 2, of the energy distribution

function p(c). For distributions obeying Eq.(2) this is necessarily of the

form
12

Ic(t)12  ,e altib a>O, Ob<2 (3)

If in addition, the spectrum of the Hamiltonian is semibounded, then the

Paley-Wiener theorem applies and the values of b would have to be in the

smaller range O<b<1, leading us again to Eq.(1). For such microscopic models,

we see that the Paley-Wiener bound becomes exact.

We have thus given here a variety of general arguments at different

levels to obtain the non-Debye relaxation in condensed matter properties.

We thank the Aspen Center for Physics, Colorado for the warm hospitality

during summer 1982 where this work was done. Our deap appreciation is due to

Professor P. W. Anderson for his interest in the subject and for communicating
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before publication.
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